Optical Properties of Wurtzite GaN and ZnO Quantum Dots
نویسندگان
چکیده
We have investigated exciton states in wurtzite GaN/AlN and ZnO quantum dots. A strong piezoelectric field in GaN/AlN quantum dots is found to tilt conduction and valence bands, thus pushing the electron to the top and the hole to the bottom of the GaN/AlN quantum dot. As a result, the exciton ground state energy in GaN/AlN quantum dots with heights larger than 3 nm exhibits a red shift with respect to bulk GaN energy gap. It is shown that the radiative decay time in GaN/AlN quantum dots is large and increases from 0.3 ns for quantum dots with height 1.5 nm to 1.1×10 ns for the quantum dots with height 4.5 nm. On the contrary, the electron and the hole are not separated in ZnO quantum dots. Moreover, a relatively thick “dead layer” is formed near the surface of ZnO quantum dots. As a result, the radiative decay time in ZnO quantum dots is small and decreases from 73 ps for quantum dots with diameter 1.5 nm to 29 ps for the quantum dots with diameter 6 nm.
منابع مشابه
Optical properties of wurtzite and zinc-blende GaNÕAlN quantum dots
We investigate theoretically and compare optical properties of wurtzite and zinc-blende GaN/AlN quantum dots with heights from 1.5 to 4.5 nm. The quantum dot size corresponds to the strong quantum confinement regime. It has been established that the built-in piezoelectric field at the GaN/AlN interface governs optical properties of wurtzite quantum dots while having a small effect on zinc-blend...
متن کاملPolar optical phonons in wurtzite spheroidal quantum dots: theory and application to ZnO and ZnO/MgZnO nanostructures
Polar optical-phonon modes are derived analytically for spheroidal quantum dots with wurtzite crystal structure. The developed theory is applied to freestanding spheroidal ZnO quantum dots and to spheroidal ZnO quantum dots embedded into a MgZnO crystal. The wurtzite (anisotropic) quantum dots are shown to have strongly different polar optical-phonon modes in comparison with zincblende (isotrop...
متن کاملInterface and confined polar optical phonons in spherical ZnO quantum dots with wurtzite crystal structure
We derive analytically the interface and confined polar optical-phonon modes for spherical quantum dots with wurtzite crystal structure. While the frequency of confined optical phonons in zincblende nanocrystals is equal to that of the bulk crystal phonons, the confined polar optical phonons in wurtzite nanocrystals are shown to have a discrete spectrum of frequencies different from those in bu...
متن کاملوابستگی انرژی گذارهای اپتیکی در نانوساختارهای چاههای کوانتومی GaN/AlGaN به پهنای سد و چاه کوانتومی
Internal polarizations field which take place in quantum structures of group-III nitrides have an important consequence on their optical properties. Optical properties of wurtzite AlGaN/GaN quantum well (QW) structures grown by MBE and MOCVD on c-plane sapphire substrates have been investigated by means of photoluminescence (PL) and time resolved photoluminescence (TRPL) at low-temperature. PL ...
متن کاملZnO Quantum Dots: Physical Properties and Optoelectronic Applications
We present a review of the recent theoretical and experimental investigation of excitonic and phonon states in ZnO quantum dots. A small dielectric constant in ZnO leads to very large exciton binding energies, while wurtzite crystal structure results in unique ph non spectra different from those in cubic crystals. The exciton nergies and radiative lifetimes are determined in the intermediate qu...
متن کامل